1. Ethan Turner, Shuhao Wu, Xinzhu Li, and Hailin Wang, “Real-time Magnetometry with Coherent Population Trapping in a Nitrogen-vacancy Center.” Phys. Rev. A 105 (1), L010601 (2022).
  2. Mark C. Kuzyk and Hailin Wang, “Phononic Quantum Networks of Solid-State Spins with Alternating and Frequency-Selective Waveguides.” preprint available arXiv:1804.07862v1
  3. Shuhao Wu, Ethan Turner, and Hailin Wang, “Continuous Real-time Sensing with a Nitrogen Vacancy Center via Coherent Population Trapping.” Phys. Rev. A 103 (4), 042607 (2021).
  4. Hailin Wang and Ignas Lekavicius, “Coupling Spins to Nanomechanical Resonators: Toward Quantum Spin-mechanics.” Appl. Phys. Lett. 117, 230501 (2020).
  5. Abigail Pauls, Ignas Lekavicius, and Hailin Wang, “Coupling Silicon Vacancy Centers in a Thin Diamond Membrane to a Silica Optical Microresonator.” Opt. Express 28 (19), 27300-27307 (2020).
  6. Ignas Lekavicius and Hailin Wang, “Optical Coherence of Implanted Silicon Vacancy Centers in Thin Diamond Membranes.” Opt. Express 27 (22), 31299-31306 (2019).
  7. Klass Bergman et al., “Roadmap on STIRAP Applications.” J. Phys. B: At. Mol. Opt. Phys. 52, 202001 (2019).
  8. He Hao et al., “Electromagnetically and Optomechanically Induced Transparency and Amplification in an Atom-assisted Cavity Optomechanical System.” Phys. Rev. A 100, 023820 (2019).
  9. Per Delsing et al., “The 2019 Surface Acoustic Waves Roadmap.” J. Phys. D: Appl. Phys. 52, 353001 (2019).
  10. Xinzhu Li, Mark C. Kuzyk, and Hailin Wang, “Honeycomblike Phononic Networks of Spins with Closed Mechanical Subsystems.” Phys. Rev. Applied 11, 064037 (2019).
  11. Shuhao Wu, Mayra Amezcua, and Hailin Wang, “Adiabatic Population Transfer of Dressed Spin States with Optimal Control.” Phys. Rev. A 99 (6), 063812 (2019).
  12. Ignas Lekavicius, Thien Oo, and Hailin Wang, “Diamond Lamb Wave Spin-mechanical Resonators with Optically Coherent Nitrogen Vacancy Centers.” J. Appl. Phys. 126, 214301 (2019).
  13. Marc C. Kuzyk and Hailin Wang, “Scaling Phononic Quantum Networks of Solid-state Spins with Closed Mechanical Subsystems.” Phys. Rev. X 8, 041027 (2018).
  14. Hailin Wang and Jens Nöckel, “Chaotic Ray Dynamics Enables Photonics with Broadband Light.” Science China – Physics, Mechanics & Astronomy 61 (1), 014231 (2018).
  15. Mark C. Kuzyk and Hailin  Wang, “Controlling Multimode Mechanical Interactions via Interference.” Phys. Rev. A 96, 023860 (2017).
  16. Ignas Lekavicius, D. Andrew Golter, Thein Oo, and Hailin Wang, “Transfer of Phase Information between Microwave and Optical Fields via an Electron Spin.” Phys. Rev. Lett. 119, 063601(2017) 
  17. D. Andrew Golter, Thein Oo, Mayra Amezcua,  Ignas Lekavicius, Kevin Stewart, and Hailin Wang, “Coupling a Surface Acoustic Wave to an Electron Spin in Diamond via a Dark State.” Phys. Rev X 6, 041060 (2016)
  18. D. Andrew Golter, Thein Oo, Mayra Amezcua, Kevin Stewart, and Hailin Wang, “Optomechanical Quantum Control of a Nitrogen-Vacancy Center in Diamond,” Phys.Rev.Lett. 116, 143602 (2016).
  19. JunHwan Kim, Mark C. Kuzyk, Kewen Han, Hailin Wang, Gaurav Bahl “Non-reciprocal Brillouin Scattering Induced Transparency,” accepted, Nature Physics (2015).
  20. Chunhua Dong, Victor Fiore, Mark C. Kuzyk, Lin Tian, and Hailin Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator;” accepted, Annalen der Physik 527, 100 (2015).
  21. Chunhua Dong, Jingtao Zhang, Victor Fiore, and Hailin Wang, “Optomechanically-induced transparency and self-induced oscillations with Bogoliubov mechanical modes,” Optica 1, 425 (2014).
  22. T.K. Baldwin and Hailin Wang, “Persistence of trions and quenching of excitons in optically-induced two-dimensional electron gases in mixed-type GaAs/AlAs quantum wells,” Jr. Opt. Soc. Am. B 31, 3138 (2014).
  23. D. Andrew Golter, T.K. Baldwin, and Hailin Wang, “Protecting a solid state spin from decoherence using dressed spin states,” Phys. Rev. Lett. 113, 237601 (2014).
  24. Kenan Qu, Chunhua Dong, Hailin Wang, and G. S. Agarwal “Optomechanical Ramsey Interferometry,” Phys. Rev. A 90, 053809 (2014).
  25. D. Andrew Golter and Hailin Wang, “Opticallly-driven Rabi oscillations and adiabatic passage of single electron spins in diamond,” Phys. Rev. Lett. 112, 116403 (2014).
  26. T.K. Baldwin and Hailin Wang, “Exciton-correlated tunneling in mixed-type GaAs quantum wells,” Phys. Rev. B. 90, 035304 (2014).
  27. Mark C. Kuzyk, Steven van Enk, and Hailin Wang, “Generating robust optical entanglement in weak-coupling optomechanical systems,”  Phys. Rev. A 88, 062341 (2013).
  28. Thein Oo, Chunhua Dong, Victor Fiore, and Hailin Wang, “Evanescently-coupled optomechanical system with SiN nanobeam and deformed silica microsphere,” Appl. Phys. Lett.  103, 031116 (2013).
  29. Chunhua Dong, Victor Fiore, Mark C. Kuzyk, and Hailin Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87, 055802 (2013).
  30. D. Andrew Golter, K.N. Dinyari, and Hailin Wang, “Nuclear spin dependent population trapping of single nitrogen vacancy centers in diamond,” Phys. Rev. A 87, 035801 (2013).
  31. Victor Fiore, Chunhua Dong, Mark C. Kuzyk, and Hailin Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87, 023812 (2013).
  32. Chunhua Dong, Victor Fiore, Mark C. Kuzyk, and Hailin Wang, “Optomechanical dark mode,” Science 338, 1609 (2012).
  33. Hailin Wang and Shannon O’Leary, “Electromagnetically induced transparency from electron spin coherences in semiconductor quantum wells,”  Jr. Opt. Soc. Am. B 29, A6-A16 (2012).
  34. K.N. Dinyari, Russel J. Barbour, and Hailin Wang,  “Mechanical tuning of whispering gallery modes over a 0.5 THz tuning range with MHz resolution in a silica microsphere at cryogenic temperatures,”  Optics Express 19, 17966 (2011).
  35. Carey Phelps, Shannon Oleary, John Prineas, and Hailin Wang, “Coherent spin dynamics of donor bound electrons in GaAs,” Phys. Rev. B 84, 085205 (2011).
  36. Victor Fiore, Yong Yang, Mark Kuzyk, Russell Barbour, Lin Tian, and Hailin Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
  37. Timothy Sweeney, Carey Phelps, and Hailin Wang, “Quantum control of electron spins in modulation-doped CdTe quantum wells with a pair of Raman-resonant and phase-locked laser pulses,” Phys. Rev. B 84, 075321 (2011)
  38. Carey Phelps, John Prineas, and Hailin Wang, “Excitonic nonlinear optical response from correlation-enhanced tunneling in mixed-type GaAs quantum wells,” Phys. Rev. B 83, 153302 (2011).
  39. L. Tian and Hailin Wang, “Optical wavelength conversion of quantum states with optomechanics,” Phys. Rev. A 82, 053806 (2010).
  40. Russel J. Barbour, K.N. Dinyari, and Hailin Wang, “A Composite optical microcavity of diamond nanopillar and deformed silica microsphere with enhanced decay length,”  Opt. Express 18, 18968 (2010).
  41. Young-Shin Park and Hailin Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nature Physics 5, 489 (2009).
  42. Carey Phelps, Timothy M. Sweeney, and Hailin Wang, “Ultrafast coherent electron spin flip in a modulation-doped CdTe quantum well,” Phys. Rev. Lett. 102, 237402 (2009).
  43. S. Crankshaw, F. G. Sedgwick, M. Moewe, C. Chang-Hasnain, Hailin Wang, S.L. Chuang, “Electron spin polarization induced by linearly polarized light in a (110) GaAs quantum well waveguide,” Phys. Rev. Lett. 102, 206604 (2009).
  44. Mats Larsson, K.N. Dinyari, and Hailin Wang, “Composite optical microcavity of Diamond nanopillar and silica microsphere,”  Nano Letters 9, 1447 (2009).
  45. Shannon O’Leary and Hailin Wang, “Manipulating nonlinear optical responses from spin-polarized electrons in a 2D electron gas via exciton injection,” Phys. Rev. B. 77, 165309 (2008).
  46. Yumin Shen, Timothy M. Sweeney, and Hailin Wang, “Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals,”  Phys. Rev. B 77, 033201 (2008).
  47. Young-Shin Park and Hailin Wang, “Radiation pressure driven mechanical oscillation in deformed silica microspheres via free space evanescent excitation,” Opt. Express, 15, 16471 (2007).
  48. Young-Shin Park and Hailin Wang, “Regenerative pulsation in silica microspheres,” Opt. Lett. 32, 3104 (2007).
  49. S. W. Chang, S. L. Chuang, Haillin Wang, C. J. Chang-Hasnain, “Slow Light Using Spin Coherence and V-type EIT in [110] Strained Quantum Well,” J. Opt. Soc. Am. B 24, 849 (2007).
  50. Shannon O’Leary, Hailin Wang, and J. Prineas, “Coherent Zeeman resonance from electron spin coherence in a mixed type GaAs quantum wells,” Opt. Lett. 32, 569 (2007).
  51. Yumin Shen, A. Goebel, and Hailin Wang, “Control of quantum beats from electron spin coherence in semiconductor quantum wells,”  Phys. Rev. B 75, 045341 (2007).
  52. Sasha Kruger, Young-Shin Park, Mark Lonergan, and Hailin Wang, “Zero-phonon linewidth in CdSe/ZnS core/shell nanorods,” Nano Letters 6, 2154 (2006).
  53. Young-Shin Park, Andrew K. Cook, and Hailin Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Letters 6, 2075 (2006).
  54. Susanta Sarkar, Yan Guo, and Hailin Wang, “Tunable optical delay via carrier induced exciton dephasing,” Opt. Express 14, 2845 (2006).
  55. Yumin Shen, A. Goebel, G. Khitrova, H. Gibbs, and Hailin Wang, “Nearly degenerate time-resolved Faraday rotation in an interacting exciton system,” Phys. Rev. B 72, 233307 (2005).
  56. Phedon Palinginis, Shanna Crankshaw, Forrest Sedgwick, Eui-Tae Kim, Michael Moewe, Connie J. Chang-Hasnain, Hailin Wang, and Shun-Lien Chuang, “Ultraslow light (<200  m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
  57. Susanta Sarkar, Phedon Palinginis, P.C. Ku, C. J. Chang-Hasnain, N.H. Kwong, R. Binder, and Hailin Wang, “Inducing electron spin coherence in a quantum well waveguide:  Spin coherence without spin precession,”  Phys. Rev. B 72, 035343 (2005).
  58. Phedon Palinginis and Hailin Wang, “Coherent Raman resonance from electron spin coherence in GaAs quantum wells,”  Phys. Rev. B70, 153307 (2004).
  59. Phedon Palinginis, Hailin Wang, Serguei Gupalov, D.S. Citrin, M. Dobrowolska, and J. Furdyna, “Exciton dephasing in self-assembled CdSe quantum dots,”  Phys. Rev. B. 70, 073302 (2004).
  60. S. W. Chang, S. L. Chuang, P.C. Ku, C. J. Chang-Hasnain, Phedon Palinginis, and Haillin Wang, “Slow light and polarization dependence of population oscillation in GaAs quantum wells,” Phys. Rev. B 70, 235333 (2004).
  61. P.C. Ku, F. G. Sedgwick, C. J. Chang-Hasnain, Phedon Palinginis, Tao Li, Hailin Wang, S. W. Chang, and S. L. Chuang “Slow light via population oscillation in semiconductor quantum wells,” Opt. Lett. 29, 2291 (2004).
  62. Phedon Palinginis and Hailin Wang, “Coherent Raman scattering from electron spin coherence in GaAs quantum well,” J. Magnetism and Magnetic Mat., 272, 1919 (2004).
  63. Mark Phillips and Hailin Wang, “Exciton spin coherence and electromagnetically induced transparency in the transient optical response of GaAs quantum wells,” Phys. Rev. B69, 115337 (2004).
  64. Phedon Palinginis and Hailin Wang, “Vanishing and emerging of absorption quantum beats from electron spin coherence in GaAs quantum wells,”  Phys. Rev. Lett. 92, 037402 (2004).
  65. Tao Li, Hailin Wang, N.H. Kwong, and R. Binder, “Electromagnetically induced transparency from electron spin coherence in a quantum well waveguide,”  Opt. Express 11, 3298 (2003).
  66. Mark Phillips, Hailin Wang, I. Rumyantsev, N.H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
  67. Scott Lacey, Hailin Wang, David Foster, Jens Noeckel, “Directional evanescent escape from nearly spherical optical resonators,” Phys. Rev. Lett. 91, 033902 (2003).
  68. Phedon Palinginis, Sahsa Tavenner, Mark Lonergan, and Hailin Wang, “Spectral hole burning and zero-phonon linewidth in semiconductor nanocrystals,” Phys. Rev. B67 Rapid Comm., 201307 (2003).
  69. Mark Phillips and Hailin Wang, “Electromagnetically induced transparency due to intervalence band coherence in semiconductors,” Optics Lett. 28, 831 (2003).
  70. Mark Phillips and Hailin Wang, “Spin coherence and electromagnetically induced transparency via exciton correlations,” Phys. Rev. Lett. 89, 186401 (2002).
  71. Scott Lacey and Hailin Wang, “Directional emission from whispering-gallery modes in deformed fused-silica microspheres,” Opt. Lett. 26, 1943-1945 (2001).
  72. Xudong Fan, Mark Lonergan, Y. Zhang, and Hailin Wang, “ Enhanced spontaneous emission from semiconductor nanocrystals embedded in whispering gallery optical microcavities,” Phys. Rev. B64, 115310 (2001).
  73. Phedon Palinginis and Hailin Wang, “High resolution spectral hole burning in CdSe/ZnS core/shell nanocrystals,” Appl. Phys. Lett. 78, 1541 (2001).
  74. T. Meier, S.W. Koch, Mark Phillips, and Hailin Wang, “Strong coupling of heavy- and light-hole excitons induced by many-body correlations,” Phys. Rev. B62, 12605 (2000).
  75. Xudong Fan, Scott Lacey, Phedon Palinginis, Hailin Wang, and Mark Lonergan “Coupling semiconductor nanocrystals to a fused silica microsphere: A quantum dot microcavity with extremely high Q-factors,” Opt. Lett. 25, 1600 (2000).
  76. D.G. Steel and Hailin Wang, “Dephasing of optically induced excitonic coherence in semiconductor heterostructures,” Appl. Phys. A71, 519 (2000).
  77. T. A. Brun and Hailin Wang, “Coupling nanocrystals to high-Q silica microspheres: entanglement in quantum dots via photon exchange,” Phys. Rev. A61, 323071 (2000).
  78. Xudong Fan, Scott Lacey, and Hailin Wang, “Microcavities combining a semiconductor heterostructures with a fused silica microsphere,” Opt. Lett. 24, 771 (1999).
  79. Mark Phillips and Hailin Wang, “Coherent oscillations in four-wave mixing of interacting excitons,” Solid State Comm. 108, 857 (1999).
  80. Xudong Fan, Hailin Wang, H.Q. Hou, and B.E. Hammons, “Biexcitonic effects in the nonperturbative regime of semiconductor microcavities,” Phys. Rev. B57 Rapid Comm., 9451 (1998).
  81. Xudong Fan, T. Takagahara, J.E. Cunningham, and Hailin Wang, “Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells,” Solid State Comm. 108, 857 (1998).
  82. Xudong Fan, Andrew Doran, and Hailin Wang, “High-Q whispering gallery modes from a composite system of GaAs quantum well and fused silica microsphere,” Appl. Phys. Lett. 73, 3190 (1998).
  83. Hailin Wang, H.Q. Hou, and B.E. Hammons, Coherent dynamics of excitonic nonlinear optical response in the nonperturbative regime,” Phys. Rev. Lett. 81, 3255 (1998).
  84. Hailin Wang, Y.-T. Chough, S.E. Palmer, and H. Carmichael, “Normal mode oscillation in the presence of inhomogeneous broadening,” Optics Express 1, 370 (1997).
  85. Xudong Fan, Hailin Wang, H.Q. Hou, and B.E. Hammons, “Laser emission from semiconductor microcavities: transition from nonperturbative to perturbative regimes,” Phys. Rev. B56, 15256 (1997).
  86. Xudong Fan, Hailin Wang, H.Q. Hou, and B.E. Hammons, “Laser emission from semiconductor microcavities: the role of cavity-polaritons,” Phys. Rev. A56, 3233 (1997).
  87. A. Ivanov, Hailin Wang, Jagdeep Shah, T.C. Damen, L.V. Keldysh, H. Haug, and L. Pfeiffer, “Coherent transient in photoluminescence of excitonic molecules in GaAs quantum wells,” Phys. Rev. B56, 3941 (1997).
  88. Hailin Wang, Jagdeep Shah, T.C. Damen, A. Ivanov, and L. Pfeiffer, “Transient optical emission from excitonic molecules in GaAs quantum wells: coherent quantum evolution in momentum space,” Solid State Comm. 98, 807 (1996).
  89. T.C. Damen, M. Fritze, A. Kastalsky, J.E. Cunningham, R.N. Pathak, Hailin Wang, J. Shah, “Time-resolved study of carrier capture and recombination in monolayer Be δ-doped GaAs,” Appl. Phys. Lett. 67, 515 (1995).
  90. Hailin Wang, Jagdeep Shah, T.C. Damen, L.N. Pfeiffer, and J.E. Cunningham, “Femtosecond dynamics of excitons in quantum wells and quantum well microcavities,” Phys. Stat. Sol. b188, 381 (1995).
  91. Hailin Wang, Jagdeep Shah, T.C. Damen, W.Y. Jan, J.E. Cunningham, and M.H. Hong,  “Coherent oscillations in semiconductor microcavities,” Phys. Rev. B51, 14713 (1995).
  92. Hailin Wang, Jagdeep Shah, T.C. Damen, and L. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: the role of momentum scattering,” Phys. Rev. Lett. 74, 3065 (1995).
  93. Hailin Wang, Jagdeep Shah, T.C. Damen, S. Pierson, T. Reinecke, and L. Pfeiffer, “Carrier-distribution dependent band gap renormalization in modulation-doped GaAs quantum wells,” Phys. Rev. B52 Rapid Comm., 17013 (1995).
  94. Y.Z. Hu, R. Binder, S.W. Koch, S.T. Cundiff, Hailin Wang, and D.G. Steel, “Excitation and polarization effects in semiconductor four-wave-mixing spectroscopy,” Phys. Rev. B49, 14382 (1994).
  95. Hailin Wang, K.B. Ferrio, D.G. Steel, P.R. Berman, Y.Z. Hu, R. Binder, and S.W. Koch, “Transient four wave mixing line shapes: Effects of excitation induced dephasing,” Phys. Rev. A49 Rapid Comm., 1551 (1994).
  96. Hailin Wang, Jagdeep Shah, T.C. Damen, and L. Pfeiffer, “Polarization dependent coherent nonlinear optical response in GaAs quantum wells: Dominant effects of two-photon coherence between the ground and biexciton states,” Solid State Comm. 91, 869 (1994).
  97. M.J. Freeman, Hailin Wang, D.G. Steel, R. Craig, and D.R. Scifers, “Amplitude squeezed light from quantum well lasers,” Optics Lett. 18, 379 (1993).
  98. M.J. Freeman, Hailin Wang, D.G. Steel, R. Craig, and D.R. Scifers, “Wavelength-tunable amplitude squeezed light from a room temperature quantum well laser,” Optics Lett. 18, 2141 (1993).
  99. M. Jiang, Hailin Wang, R. Merlin, M. Cardona, and D.G. Steel, “Nonlinear optical spectroscopy in GaAs:  Magnetic free out of excitons,” Phys. Rev. B48 Rapid Comm., 15476 (1993).
  100. Hailin Wang, K.B. Ferrio, D.G. Steel, Y.Z. Hu, R. Binder, and S.W. Koch, “Transient nonlinear optical response from excitation induced dephasing in GaAs,” Phys. Rev. Lett. 71, 1261 (1993).
  101. Hailin Wang, M.J. Freeman, and D.G. Steel, “Squeezed light from injection-locked quantum well lasers,” Phys. Rev. Lett. 71, 3951 (1993).
  102. Joseph V. Mersol, Hailin Wang, Duncan G. Steel, and Ari Gafni, “Consideration of dipole orientation angles yields accurate equations for energy transfer rates in the rapid diffusion limit,”  Biophysical Journal 61, 1647 (1992).
  103. M. Jiang, Hailin Wang, and D.G. Steel, “Nonlinear optical absorption and dynamics in quantum wells,” Appl. Phys. Lett. 61, 1301 (1992).
  104. S.T. Cundiff, Hailin Wang, and D.G. Steel, “Polarization dependent picosecond excitonic nonlinearities and the complexities of disorder,” Phys. Rev. B46 Rapid Comm., 7248 (1992).
  105. Hailin Wang, M. Jiang, R. Merlin, and D.G. Steel, “Spin-flip induced hole burning in GaAs quantum wells: Measurement of exciton Zeeman splitting,” Phys. Rev. Lett. 69, 804 (1992).
  106. Hailin Wang and D. G. Steel, “High resolution laser spectroscopy of exciton relaxation in GaAs quantum wells,”  Applied Physics A53, 514 (1991).
  107. Hailin Wang and D. G. Steel, “Effects of spectral diffusion on frequency domain four wave mixing spectroscopy,”  Phys. Rev. A 43, 3823 (1991).
  108. J.T. Remillard, Hailin Wang, M.D.Webb, D.G. Steel, “Frequency domain four-wave mixing spectroscopy of temperature and optical intensity dependent relaxation in CdSe microcrystallite doped glass,” J. Opt. Soc. Am. B7, 897 (1990).
  109. Hailin Wang, J.T. Remillard, M.D. Webb, and D.G. Steel, “High resolution laser spectroscopy of relaxation and the excitation line shape of excitons in GaAs quantum well structures,” Surf. Sci. 228, 69 (1990).
  110. Hailin Wang, M. Jiang, and D. G. Steel, “Measurement of phonon assisted migration of localized excitons in GaAs/AlGaAs multiple quantum well structures,” Phys. Rev. Lett. 65, 1255 (1990).
  111. J.T. Remillard, Hailin Wang, M.D. Webb, D.G. Steel, “Optical phase conjugation and nonlinear optical band pass filter characteristics in CdSe microcrystallite doped glass,” IEEE J. Quant. Elec. 25, 408, (1989).
  112. J.T. Remillard, Hailin Wang, M.D. Webb, D.G. Steel, J. Oh, J. Pamulapati, P.K. Bhattacharya, “High resolution nonlinear laser spectroscopy of room temperature GaAs quantum well structures: Observation of interference effects,” Optics Lett. 14, 1131 (1989).
  113. J.T. Remillard, Hailin Wang, D.G. Steel, J. Oh, J. Pamulapati, and P.K. Bhattacharya, “High resolution nonlinear laser spectroscopy of the heavy hole exciton in a GaAs/AlGaAs quantum well structure: A direct measure of the exciton line shape,” Phys. Rev. Lett. 62, 2861 (1989).